Hálózatok osztályozása
Több, többé-kevésbé önkényes kritériumrendszer szerint lehet osztályozni a hálózatokat.
Területi kiterjedés alapján
- WANA távolsági hálózatok (WAN) olyan számítógépes hálózatok, amelyek száz kilométernél nagyobb távolságokat hidalnak át. Ilyen például az oktatási intézmények, bankok, cégek, országok közötti hálózat.
- A legnagyobbak a nagykiterjedésű (esetenként akár világméretű) hálózatok. Ezeket WAN-oknak (Wide Area Network) nevezzük és azért fontosak, mert a jelenleg robbanásszerűen terjedő InternetNemzetközileg elfogadott, angol eredetű szó. Magyarul annyit tesz: hálózatok hálózata. Az egész világot körülölelő számítógép-hálózat,. Gyakori hivatkozás a net kifejezés is. Az Internet egy olyan hatalmas adatbázis, amely rengeteg számítógép-hálózatot fog össze. Ennek eredménye egyfajta kibertér, amely a valódi világ mellett egyfajta alternatív teret biztosít. Az Internet a számítógépek összekötéséből jött létre, hogy az egymástól teljesen különböző hálózatok egymással átlátszó módon tudjanak elektronikus leveleket cserélni, állományokat továbbítani. Az Internet úgynevezett TCP/IP alapú hálózat. Mivel ez a protokoll-készlet több hálózatnak is alapja, ezért a globális hálózatot helyi hálózatok, intranetek, különböző távolsági hálózatok alkotják. Mindeközben az adatok a legkülönfélébb fizikai közegekben utazhatnak telefonvonalak, különböző hálózati kábelek vagy kommunikációs műholdak segítségével. Röviden szólva: az Internet nem valami fizikai hálózat, hanem annak módja, ahogy az egymástól különböző hálózatokat összekötik avégből, hogy egymással kommunikálni tudjanak. Az Internet olyan gyorsan növekszik, hogy nem lenne értelme számokat megemlíteni, hiszen azok pár hónap múlva nem lennének helytállóak. Inkább csak az arányokkal érdemes foglalkozni. A növekedés, azaz az Internetbe kapcsolt számítógépek számának alakulása havonta 10-15 %-ot dönget. Mivel az Internet egymástól különböző hálózatokat köt össze, a felhasználó bátran választhat bármilyen eszközt a munkája elvégzéséhez, az adatokat a hálózaton keresztül egységesen tudja kezelni. Ma már elmondható, hogy az Internet a világ elektronikus postájává lépett elő. Ez azt jelenti, hogy a felhasználók az üzeneteikre azonnali választ kaphatnak. Az Internetet felépítő és szabályozó protokollok mindenki számára hozzáférhetőek, ezeket rengeteg gyártó támogatja: mindez a hatékony szabványosítás eredményének is betudható. Egykor a Hálózat kizárólag csak a kutatók, oktatók és katonai intézmények számára volt elérhető. Ma már nagymértékben tart az Internet kommercializálódása, mivel sok cég ismeri fel, hogy enélkül lassan nem lehet megélni az üzleti életben. A legfontosabb adaléka azonban az, hogy az üzenetszórásos médiumokkal ellentétben itt a felhasználó választhatja meg, hogy milyen információt akar megszerezni. Ugyanígy bárkiből válhat információforrás. Biztosan előfordult már, hogy ön is ráakadt valami nagyon hasznos dologra az Interneten, legyen az program, információ vagy akár csak egy kis idézet. Mivel ezeknek általában nincs nagy kereskedelmi értékük, ezért üzenetszórásos csatornákon (televízió, rádió) nem valószínű hogy megtalálhatóak. Senki ne keresse az Internet központi épületét ! Ilyen nincs — és valószínűleg nem is lesz. Minden hálózat, amely az Internethez csatlakozik, önálló életet él. Ezen hálózatok csatlakoztatásának összehangolását, az ezzel kapcsolatos információk szolgáltatását, illetve a felmerülő mérnöki tevékenységeket az 1992 januárjában létrehozott, profitmentes Internet Society (ISOC) irányítja, amelynek bárki szabadon tagja lehet. Központja a Virginia, USA állambeli Restonban van. Sokszor elhangzik a kezdő Internetes felhasználóktól az a kérdés, hogy ki fizeti az Internetet ? Sokan úgy gondolják, hogy ingyenes. Nos, ez igaz is, meg nem is. Igaz annyiban, hogy az Internetre csatlakozott hálózattal rendelkező intézmények (legyen az oktatási, kereskedelmi vagy akár katonai jellegű) alkalmazottai a munkahelyükről ingyenesen férnek hozzá az Internethez. Nem igaz annyiban, hogy az egyes csatlakozó hálózatok saját maguk állják a működésükhöz szükséges anyagiakat. Az egyszerű mezei felhasználó általában fizet a helyi Internet-szolgáltató cégnek, akit pedig az adott ország nagy sebességű gerinchálózatát üzemeltető intézmény csapol meg anyagilag. A különböző országok a díjakat egymás között pedig nemzetközi szerződésekben rögzítik. hálózatÁltalában hálózaton sok eszköz összekapcsolt együttesét értjük. így egy számítógépes hálózatban, nem meglepő módon, számítógépek vannak egymással fizikai kapcsolatban. Ez alatt persze nem azt kell érteni, hogy minden gép minden másikkal közvetlenül össze van drótozva, hanem azt, hogy elvileg mindegyikük fel tud építeni kapcsolatot bármelyik másikkal. A közvetlen fizikai kapcsolat inkább a helyi hálózatokra jellemző. Mire jó (egyáltalán jó-e) a hálózat? Legfőképpen arra, hogy az összekapcsolódás révén az információ áramlása felgyorsul. Hasznos a hálózat abban a tekintetben is, hogy a számítógépek összekapcsolásával az eredetileg egyedül álló, gyengébb teljesítményű gépek együtt egy nagy teljesítményű rendszert alkotnak, amelynek segítségével különböző feladatok oldhatók meg. Mindezek pedig kifejezetten előnyös tulajdonságok. használatához nyújtanak alapokat.
- MANmetropolitan area network városi hálózat
- Ez alatt helyezkednek el a városi, nagyobb területre kiterjedő MAN-ok (Metropolitan Area Network).
- LANLAN A helyi hálózatok olyan számítógépes hálózatok, amelyek néhány kilométernyi távolságokat hidalnak át. Tipikusan ilyen például egy intézmény, egy cég egy vagy több épületében lévő gépeinek az összekapcsolása, de ide tartozik az egy helyiségben összekapcsolt gépek hálózata is. A helyi hálózatok megjelenését és elterjedését a hardvereszközök jobb, hatékonyabb kihasználásának szükséglete segítette elő. Ugyanakkor például ha egy irodában mindenki nagyjából ugyanazokat a programokat, legtöbb esetben pedig ugyanazokat az adatokat is használja a saját gépén, akkor ezek minden gépen helyet foglalnak. Mennyivel gazdaságosabb, ha a gépeket hálózatba kötjük, és a programokat, adatokat csak egy példányban, egyetlen számítógépen tároljuk. Ha valaki egy programot használni akar, akkor elkéri a hálózaton keresztül. Ez nem csak a programokra igaz, hanem a hardvereszközökre és az információkra is. Például egy hálózatba kapcsolt géphez kötött nyomtatót is használhat mindenki a saját gépéről. A technikai fejlődés következtében a hardvereszközök egyre olcsóbbak lettek, így más előnyök kerültek előtérbe. Ilyen a kollektív munka, mivel a felhasználók egymás gépeihez, adataihoz könnyen hozzáférhetnek. Képzeljük el, hogy mekkora fejfájást okozna az egy központi raktárral, de több elárusítóhellyel rendelkező kereskedőnek, ha egy árut többször is eladna! A hálózat lehetőséget ad az adatok biztonságos tárolására is: két tárolót használnak, és az egyik meghibásodása esetén a másik veszi át annak szerepét. Az egészből a felhasználók semmit nem vesznek észre. A hálózaton tárolt adatokat titkosítani is lehet: minden felhasználót különböző hozzáférési jogokkal (írás, olvasás, végrehajtás) lehet felruházni.
- A harmadik szintA mai modern számítógép-hálózatok tervezését struktúrális módszerrel végzik, azaz a hálózat egyes részeit rétegekbe (layer) vagy más néven szintekbe (level) szervezik, amelyik mindegyike az előzőre épül. a helyi hálózatok (LANLAN A helyi hálózatok olyan számítógépes hálózatok, amelyek néhány kilométernyi távolságokat hidalnak át. Tipikusan ilyen például egy intézmény, egy cég egy vagy több épületében lévő gépeinek az összekapcsolása, de ide tartozik az egy helyiségben összekapcsolt gépek hálózata is. A helyi hálózatok megjelenését és elterjedését a hardvereszközök jobb, hatékonyabb kihasználásának szükséglete segítette elő. Ugyanakkor például ha egy irodában mindenki nagyjából ugyanazokat a programokat, legtöbb esetben pedig ugyanazokat az adatokat is használja a saját gépén, akkor ezek minden gépen helyet foglalnak. Mennyivel gazdaságosabb, ha a gépeket hálózatba kötjük, és a programokat, adatokat csak egy példányban, egyetlen számítógépen tároljuk. Ha valaki egy programot használni akar, akkor elkéri a hálózaton keresztül. Ez nem csak a programokra igaz, hanem a hardvereszközökre és az információkra is. Például egy hálózatba kapcsolt géphez kötött nyomtatót is használhat mindenki a saját gépéről. A technikai fejlődés következtében a hardvereszközök egyre olcsóbbak lettek, így más előnyök kerültek előtérbe. Ilyen a kollektív munka, mivel a felhasználók egymás gépeihez, adataihoz könnyen hozzáférhetnek. Képzeljük el, hogy mekkora fejfájást okozna az egy központi raktárral, de több elárusítóhellyel rendelkező kereskedőnek, ha egy árut többször is eladna! A hálózat lehetőséget ad az adatok biztonságos tárolására is: két tárolót használnak, és az egyik meghibásodása esetén a másik veszi át annak szerepét. Az egészből a felhasználók semmit nem vesznek észre. A hálózaton tárolt adatokat titkosítani is lehet: minden felhasználót különböző hozzáférési jogokkal (írás, olvasás, végrehajtás) lehet felruházni. – Local Area Network). Ezek általában egy intézményhez kapcsolódnak, segítve az intézmény szervezettségét, az intézmény hatékony működéséhez szükséges intézményen belüli kommunikációt.
- mikrokommunikációs
- A negyedik szintA mai modern számítógép-hálózatok tervezését struktúrális módszerrel végzik, azaz a hálózat egyes részeit rétegekbe (layer) vagy más néven szintekbe (level) szervezik, amelyik mindegyike az előzőre épül. a termelés- és folyamatirányításban egyre nagyobb szerepet játszó mikroszámítógép alapú eszközök kapcsolatát lehetővé tevő kommunikációs hálózatok.
A felhasználók szempontjából
- nyilvános hálózatok,
- mint a telefon, telexhálózat
- magánhálózatok,
- amelyeket egy intézmény, vagy szervezet tart fenn pl. posta, vasút, belügy, stb.
Szabványosítás szempontjából
- Zárt rendszer
- Egységeit csak a gyártó által ismert módon lehet hálózatba kötni. Minden egység egy gyártótól van.
- Nyílt rendszer
- Általános érvényű szabályokat és ajánlásokat követ. Eszközei több gyártótól származnak, tehát viszonylag hardverfüggetlen.
Átviteli módszer alapján
- Alapsávú (Baseband)
- Modulálatlan jeleket továbbít, tehát az átviteli közegben haladó jel frekvenciája közel azonos a bitsorozat frekvenciájával. Telepítése olcsó, csak rövid távra alkalmazható. Általában LAN-okhoz használják.
- Szélessávú (Broadband)
- Az adatátvitelKét vagy több eszköz közötti adatcsere. Az eszközök lehetnek számítógépek, perifériák, programok stb. Az adatátvitel fő jellemzője az adatátviteli sebesség, amely nagy mértékben függ az eszközök közötti kapcsolat, összeköttetés módjától, minőségétől. modulált, tehát a vivő frekvenciája jóval nagyobb, mint a bitsorozat frekvenciája. Az átvitelre használható sávot több logikai csatornára osztják.
Topológia alapján
A legelterjedtebb topológiák a következők:
- Bus (sín)
- A gépek egy közös átviteli közegre csatlakoznak.
-
- Ring (gyűrű)
- A gépek egy gyűrűre vannak felfűzve.
-
- Tree (fa)
- Bármely két összekötött gép között egy és csak egy útvonal van.
-
- Star (csillag)
- Minden gép csak a központi géppel van összekötve.
-
Ezenkívül találkozhatunk egyéb topológiákkal is, mint:
- Mesh (hálós)
- Minden gép minden géppel egyedileg össze van kötve.
- Részben összefüggő
- A teljes összeköttetésből elhagyunk néhány ágat.
Átviteli sebesség alapján
A technikai fejlődés évről évre átírja a hálózatok sebességi alapadatait. Napjainkban a 100 Mbit/s határt is átlépték már a fejlesztésekkel.
- Lassú (~30 kbit/s)
- általában telefonvonalakat használnak az adatátvitelre.
- Közepes (~1-20 Mbit/s)
- A LAN-ok többsége ebbe a kategóriába sorolható. Pl.: az EthernetA Xerox-cég által kifejlesztett helyi hálózati technológia, mely 10 Mbps névleges adatátviteli sebességet biztosít, koaxiális (árnyékolt) kábelen, vagy árnyékolatlan csavart érpáron. Továbbfejlesztett változataival már 100 Mbps (Fast Ethernet) és 1-10 Gbps (Gigabit Ethernet) sebességet is el lehet érni, ehhez azonban már üvegszálas összeköttetés kell. Az Ethernet-hálózatoknak többféle topológiája ismert (10BASE2, 10BASE5, 10BASE-T, 100BASE-T), amelyek nemcsak az adatátviteli sebességekben, hanem a kábel maximális hosszában is különböznek egymástól. 10 Mbit/s, Token Ringvezérjeles gyűrű A létező többféle gyűrű kialakítások közül a 802.5 által szabványosítottat vezérjeles gyűrűnek (token ring) nevezik. a fizikai rétegben a 1, 4 vagy 16 Mbit/s-os sebességre alkalmas árnyékolt sodrott érpárt használ. Az IBM verziója, akárcsak a legtöbb vezérjeles gyűrű, 16 Mbit/s-os sebességen működik. A jeleket a különbségi Manchester-kódolással kódolják. A magas és alacsony logikai értékeket 3,0-4,5 V közötti pozitív, ill. negatív jelek képviselik. Rendesen a különbségi Manchester-kódolás magas-alacsony és alacsony-magas váltásokat használ a bitek jelzésére, de a 802.5 bizonyos vezérlőbájtokban (pl. keretek elejének és végének jelzésére) alacsony-alacsony és magas-magas átmeneteket is használ. Ezek a nem adat jellegű jelek csak egymást követő párokban fordulnak elő azért, hogy ne idézzenek elő egyenfeszültségű komponenst a gyűrűn. 16 Mbit/s.
- Nagy sebességű (~50 Mbit/s fölött)
- Sokáig speciális célokra használták, de manapság a 100 Mbit/s-os lokális hálózatok terjednek el. Jó példája az üvegszálra épülõFDDIKét optikai szálas gyűrűből áll, amelyekben az adatforgalom ellentétes irányú. Ha az egyik meghibásodik a másikon az adatforgalom tovább folyik. Ha mindkettő ugyanazon a ponton szakad meg akkor a két gyűrű egyetlen dupla hosszú gyűrűvé alakítható. Minden állomás olyan relékkel van felszerelve, amelyek a gyűrűk összekapcsolására, és a meghibásodott állomások kiiktatására használhatók. Az FDDI két állomástípust határoz meg:
• az A osztályú állomást, amely mindkét gyűrűhöz kapcsolódik, és a
• B osztályút, amelyik csak az egyikhez.
Az igényektől és a költségektől függően üzembe helyezéskor tiszta A, tiszta B, vagy kombinált típusú állomásokból építhetjük fel a hálózatot. Az FDDI több-módusú üvegszálakat használ olcsóbb volta és kisebb veszélyessége (nem lézerfény, csak LED) miatt.
(Fiber Distributed Data InterfaceAngol szó, magyarul csatolófelület, csatlakozási felület, illetve illesztőfelület kifejezésekkel illetik. Az interface egy olyan eszköz, illetve illesztési felület, amelynek segítségével két különböző hardver- vagy szoftvereszköz közötti kommunikációt valósíthatunk meg. A csatolófelület feladata például az összekapcsoláshoz felhasznált jelrendszer értelmezése is.) nevű hálózatÁltalában hálózaton sok eszköz összekapcsolt együttesét értjük. így egy számítógépes hálózatban, nem meglepő módon, számítógépek vannak egymással fizikai kapcsolatban. Ez alatt persze nem azt kell érteni, hogy minden gép minden másikkal közvetlenül össze van drótozva, hanem azt, hogy elvileg mindegyikük fel tud építeni kapcsolatot bármelyik másikkal. A közvetlen fizikai kapcsolat inkább a helyi hálózatokra jellemző. Mire jó (egyáltalán jó-e) a hálózat? Legfőképpen arra, hogy az összekapcsolódás révén az információ áramlása felgyorsul. Hasznos a hálózat abban a tekintetben is, hogy a számítógépek összekapcsolásával az eredetileg egyedül álló, gyengébb teljesítményű gépek együtt egy nagy teljesítményű rendszert alkotnak, amelynek segítségével különböző feladatok oldhatók meg. Mindezek pedig kifejezetten előnyös tulajdonságok..
Kommunikáció iránya szerint
- Simplex (csak egyirányú)
- Az egyik állomás csak az adó a másik csak a vevő.
- Fél duplexAz ilyen átvitel esetén a csatornán az információáramlás már kétirányú, felváltva történik, úgy hogy egyszerre mindig csak az egyik irány foglalja a csatornát. Ilyen átvitel valósul meg nagyon sok rádiós kapcsolatban (pl. CB rádió). Váltakozóan két irányú = fél duplex. (váltakozó irányú)
- Mindkét irányban megengedett az adatátvitelKét vagy több eszköz közötti adatcsere. Az eszközök lehetnek számítógépek, perifériák, programok stb. Az adatátvitel fő jellemzője az adatátviteli sebesség, amely nagy mértékben függ az eszközök közötti kapcsolat, összeköttetés módjától, minőségétől., de egy időben csak az egyik irányban élhet.
- Duplex (kétirányú)
- Mindkét állomás egyszerre lehet adó és vevő is.
Közeghozzáférés szerint
- Véletlen átvitelvezérlés
- Egyik állomásnak sincs engedélyre szüksége az üzenettovábbításhoz, adás előtt csak az átvivő közeg szabad voltát ellenőrzi. Tipikus megvalósítása a CSMA/CDÜtközést jelző vivőérzékeléses többszörös hozzáférés. Carrier Sense Multiple Access with Collision Detection. Ennél a módszernél, mielőtt egy állomás adatokat küldene, először “belehallgat” a csatornába, hogy megtudja, hogy van-e éppen olyan állomás amelyik használja a csatornát. Ha a csatorna “csendes”, azaz egyik állomás sem használja, a “hallgatódzó” állomás elküldi az üzenetét. A vivőérzékelés (carrier sense) jelenti azt hogy az állomás adás előtt belehallgat a csatornába. Az állomás által küldött üzenet a csatornán keresztül minden állomáshoz eljut, és véve az üzenetet a bennfoglalt cím alapján eldöntheti hogy az neki szólt (és ilyenkor feldolgozza), vagy pedig nem (és akkor eldobja). Ennél a módszernél természetesen előfordulhat olyan eset, amikor egyszerre két vagy több állomás akarja használni a közeget. Az adás közben — mivel közben a csatornán lévő üzenetet veszi — el tudja dönteni, hogy az adott és a vett üzenetfolyam egyforma-e. Ha ezek különbözők, akkor azt jelenti, hogy valaki más is “beszél”, azaz a küldött üzenet hibás, sérült. Ezt ütközésnek hívják, és ilyenkor az állomás megszakítja az üzenetküldést. (Carrier Sense Multiple Access with Collision Detection), azaz csatorna figyelő többszörös hozzáférés ütközés detektálással.
- Osztott átvitelvezérlés
- Csak egy állomásnak van joga adni, de ez a jog az állomások között körbe jár. Ezt alkalmazzák a vezérjelet továbbító (token=vezérjel) – token passing – módszer esetén. A vezérjelet birtokló állomás adhat. Megkülönböztetünk vezérjeles gyűrűvezérjeles gyűrű A létező többféle gyűrű kialakítások közül a 802.5 által szabványosítottat vezérjeles gyűrűnek (token ring) nevezik. a fizikai rétegben a 1, 4 vagy 16 Mbit/s-os sebességre alkalmas árnyékolt sodrott érpárt használ. Az IBM verziója, akárcsak a legtöbb vezérjeles gyűrű, 16 Mbit/s-os sebességen működik. A jeleket a különbségi Manchester-kódolással kódolják. A magas és alacsony logikai értékeket 3,0-4,5 V közötti pozitív, ill. negatív jelek képviselik. Rendesen a különbségi Manchester-kódolás magas-alacsony és alacsony-magas váltásokat használ a bitek jelzésére, de a 802.5 bizonyos vezérlőbájtokban (pl. keretek elejének és végének jelzésére) alacsony-alacsony és magas-magas átmeneteket is használ. Ezek a nem adat jellegű jelek csak egymást követő párokban fordulnak elő azért, hogy ne idézzenek elő egyenfeszültségű komponenst a gyűrűn. (token ringvezérjeles gyűrű A létező többféle gyűrű kialakítások közül a 802.5 által szabványosítottat vezérjeles gyűrűnek (token ring) nevezik. a fizikai rétegben a 1, 4 vagy 16 Mbit/s-os sebességre alkalmas árnyékolt sodrott érpárt használ. Az IBM verziója, akárcsak a legtöbb vezérjeles gyűrű, 16 Mbit/s-os sebességen működik. A jeleket a különbségi Manchester-kódolással kódolják. A magas és alacsony logikai értékeket 3,0-4,5 V közötti pozitív, ill. negatív jelek képviselik. Rendesen a különbségi Manchester-kódolás magas-alacsony és alacsony-magas váltásokat használ a bitek jelzésére, de a 802.5 bizonyos vezérlőbájtokban (pl. keretek elejének és végének jelzésére) alacsony-alacsony és magas-magas átmeneteket is használ. Ezek a nem adat jellegű jelek csak egymást követő párokban fordulnak elő azért, hogy ne idézzenek elő egyenfeszültségű komponenst a gyűrűn.) és vezérjeles sínA gyűrű mint fizikai topológia kevéssé illeszkedik a futószalagok egyenes vonalú kialakításához. Ezért egy olyan kialakítást szabványosítottak, amely fizikailag lineáris buszkialakítása miatt üzenetszórásos módot használ (azaz a gyűrűtől eltérően nem pont-pont kapcsolati módon dolgozik). Logikailag azonban gyűrű felépítésű. Elnevezése: vezérjel busz, vagy vezérjeles sín. A logikai gyűrű szervezés azt jelenti, hogy minden állomás ismeri a bal és a jobb oldali állomásának a címét. Ez a szomszédság nem a fizikai elhelyezkedés, hanem a gyűrűben elfoglalt logikai elhelyezkedés szerinti. Amikor a gyűrűt elindítják, elsőként a legmagasabb sorszámú állomás küldhet üzenetet. A küldés után átadja a küldés jogát a közvetlen szomszédjának, amit egy speciális keret a vezérjel (token) képvisel. Ez a vezérjel a logikai gyűrű mentén jár körbe, állomásról állomásra. Küldési joga csak a tokent birtokló állomásnak van, ezért ütközés nem jöhet létre. A gyűrűhöz csatlakozó állomások minden üzenetet vesznek, de csak a neki szólót veszik figyelembe. (token bus) topológiát.
- Központosított átvitelvezérlés
- Egy kitüntetett állomás foglalkozik az átviteli jogok kiosztásával.
Kapcsolási technika alapján
- Vonalkapcsolt
- A kommunikáló állomások között állandó kapcsolat épül ki az adás idejére. Jó példája a telefon.
- Üzenetkapcsolt
- A két állomás között az átviteli hálózatÁltalában hálózaton sok eszköz összekapcsolt együttesét értjük. így egy számítógépes hálózatban, nem meglepő módon, számítógépek vannak egymással fizikai kapcsolatban. Ez alatt persze nem azt kell érteni, hogy minden gép minden másikkal közvetlenül össze van drótozva, hanem azt, hogy elvileg mindegyikük fel tud építeni kapcsolatot bármelyik másikkal. A közvetlen fizikai kapcsolat inkább a helyi hálózatokra jellemző. Mire jó (egyáltalán jó-e) a hálózat? Legfőképpen arra, hogy az összekapcsolódás révén az információ áramlása felgyorsul. Hasznos a hálózat abban a tekintetben is, hogy a számítógépek összekapcsolásával az eredetileg egyedül álló, gyengébb teljesítményű gépek együtt egy nagy teljesítményű rendszert alkotnak, amelynek segítségével különböző feladatok oldhatók meg. Mindezek pedig kifejezetten előnyös tulajdonságok. tárolva továbbító – store-and-forwardKét pont közötti csatornával rendelkező alhálózatnál (pont-pont összeköttetés) a két kommunikációs végpontot pl. egy kábellel kötik össze, és az üzenetek (más néven csomagok (packet) ) ezen a kábelen keresztül haladnak. Amikor egy vevő megkapja a csomagot és az nem neki szól, akkor azt továbbadja egy következő pont-pont összeköttetésen keresztül. Ezért az ilyen típusú hálózatokat más néven szokták két pont közötti (point-to-point), vagy tárol és továbbít (store-and-forward ) hálózatoknak nevezni. – számítógépekből áll, ezek továbbítják
az üzeneteket egy címinformáció alapján. Az üzenet hossza nem korlátozott. Hasonlít a postai csomagküldéshez. - Csomagkapcsolt
- Hasonlít az üzenetkapcsolthoz, csak a csomag mérete maximált, ezért az üzeneteket csomagokra (packet) kell darabolni.
Összeköttetés jellege alapján
- Összeköttetés nélküli
- A csomag átvitelét az un. datagramA TCP/IP protokollban az információ datagramban terjed. A datagram (csomag) az üzenetben elküldött adatok összessége. Minden datagram a hálózatban egyedi módon terjed. Ezen csomagok továbbítására két protokoll, a TCP és az IP szolgál. A TCP (Transmission Control Protocol) végzi az üzenetek datagramokra darabolását, míg a másik oldalon az összerakást. Kezeli az esetleges elvesző csomagok újrakérését és a sorrendváltozást. Az IP (Internet Protocol) az egyedi datagramok továbbításáért felelős. (távirat) service végzi. Ezek a csomagok rendelkeznek a forrás és cél gépre vonatkozó címinformációkkal. A csomagok érkezési sorrendje is változhat. Bonyolult az érkező csomagok összerakása.
- Virtuális összeköttetés
- A csomagok átvitelét egy un. virtuális áramkörAz összeköttetés alapú hálózatoknál az összeköttetést virtuális áramkörnek (VÁ) szokták nevezni. A forrás és a cél között felépült állandó úton vándorolnak a csomagok, de egy fizikai közeget egyszerre több virtuális kapcsolat használhat. Virtuális áramkörök használatakor nem kell minden egyes csomagra forgalomszabályozási döntést hozni. A forgalomszabályozás az összeköttetés létesítésének a része, vagyis kiválasztásra kerül a forrást és a célt összekötő útvonal, amelyen lezajlik az összeköttetés forgalma. Az ilyen módon felhasznált virtuális áramkör az összeköttetés bontásakor megszűnik. A virtuális áramkörök kialakításához minden csomópontnak fenn kell tartani egy olyan táblázatot, amely bejegyzései a rajta keresztül haladó éppen használt virtuális áramkörök jellemzőit (honnan jött—hova megy) tartalmazzák, és az azonosításukra egy sorszámot használnak. Minden hálózaton keresztülhaladó csomagnak tartalmaznia kell az általa használt virtuális áramkör sorszámát. Amikor egy csomag megérkezik egy csomóponthoz, az tudja, hogy melyik vonalon jött, és mi az általa használt virtuális áramkörének sorszáma. A tárolt táblázatából ezek alapján ki tudja olvasni, hogy melyik csomópont felé kell továbbküldeni. (virtual circuit) biztosítja. Ez egy hívás után felépülő logikai összeköttetés, amely a bontásig fennáll, tehát a csomagok ezen a rögzített adatúton jutnak el a célba. Nem használ teljes címzést, csak az adatáramkör azonosítóját.