Hálózati architektúrák
A mai modern számítógép-hálózatokA számítógép-hálózatok alatt az egymással kapcsolatban lévő önálló számítógépek rendszerét értjük. A számítógépes hálózatoknak több fajtája létezik, amelyeket többféleképpen lehet csoportosítani. A legelterjedtebb a hálózat kiterjedése szerinti osztályozás. Egy cég egy vagy több épületben lévő gépeinek az összekapcsolása nem haladja meg a néhány kilométeres kategóriát, ugyanakkor a különböző cégek, bankok, oktatási intézmények közti kapcsolat megteremtése már száz kilométer feletti távolságokat jelent. Ennek eredményeképpen két fő hálózati technológia alakult ki. Beszélhetünk helyi (Local Area Network), illetve nagy kiterjedésű távolsági (Wide Area Network) hálózatokról. A kettő között a fizikai eszközök fejlődésével egy harmadik forma, a városi hálózat (Metropolitan Area Network) alakult ki, ahol a helyi hálózatok esetében megszokottnál nagyobb, de mindenképpen 100 kilométernél kisebb távolságokról van szó. Az így csoportosított hálózatokra jellemző még az adatátvitel sebessége is. általános megközelítésként igaz, hogy minél kiterjedtebb egy hálózat, annál lassabb az információ áramlása. tervezését strukturális módszerrel végzik, azaz a hálózatÁltalában hálózaton sok eszköz összekapcsolt együttesét értjük. így egy számítógépes hálózatban, nem meglepő módon, számítógépek vannak egymással fizikai kapcsolatban. Ez alatt persze nem azt kell érteni, hogy minden gép minden másikkal közvetlenül össze van drótozva, hanem azt, hogy elvileg mindegyikük fel tud építeni kapcsolatot bármelyik másikkal. A közvetlen fizikai kapcsolat inkább a helyi hálózatokra jellemző. Mire jó (egyáltalán jó-e) a hálózat? Legfőképpen arra, hogy az összekapcsolódás révén az információ áramlása felgyorsul. Hasznos a hálózat abban a tekintetben is, hogy a számítógépek összekapcsolásával az eredetileg egyedül álló, gyengébb teljesítményű gépek együtt egy nagy teljesítményű rendszert alkotnak, amelynek segítségével különböző feladatok oldhatók meg. Mindezek pedig kifejezetten előnyös tulajdonságok. egyes részeit rétegekbe (layer) vagy más néven szintekbe (level) szervezik, amelyek mindegyike az előzőre épül.
Hálózati kapcsolatnál az egyik gép k.-adik rétege a másik gép ugyanilyen szintű rétegével kommunikál. Ezt olyan módon teszi, hogy minden egyes rétegA mai modern számítógép-hálózatok tervezését struktúrális módszerrel végzik, azaz a hálózat egyes részeit réteg-ekbe (layer) vagy más néven szint-ekbe (level) szervezik, amelyik mindegyike az előzőre épül. az alatta lévő/elhelyezkedő rétegnek vezérlőinformációkat és adatokat ad át egészen a legalsó rétegig, amiAlternate Mark Inversion: - váltakozó 1 invertálás. A módszer nagyon hasonló az RZ módszerhez, de nullára szimmetrikus tápfeszültséget használ, így az egyenfeszültségű összetevője nulla. Minden 1-es-hez rendelt polaritás az előző 1-eshez rendelt ellentettje, a nulla szint jelöli a 0-át. Természetesen hosszú 0-s sorozatok esetén a szinkronizáció itt is problémás, de a bitbeszúrási módszer itt is használható. már a kapcsolatot megvalósító fizikai közeghez kapcsolódik.
A kommunikációnál használt szabályok és megállapodások összességét protokollnak (protocol) nevezzük.
A szomszédos rétegek között egy réteginterfészA szomszédos rétegek között egy réteginterfész húzódik, amely az alsóbb réteg által a felsőnek nyújtott elemi műveleteket és szolgálatokat határozza meg. húzódik, amely az alsóbb rétegA mai modern számítógép-hálózatok tervezését struktúrális módszerrel végzik, azaz a hálózat egyes részeit réteg-ekbe (layer) vagy más néven szint-ekbe (level) szervezik, amelyik mindegyike az előzőre épül. által a felsőnek nyújtott elemi műveleteket és szolgálatokat határozza meg. A legfontosabb, hogy ez az interfészAngol szó, magyarul csatolófelület, csatlakozási felület, illetve illesztőfelület kifejezésekkel illetik. Az interface egy olyan eszköz, illetve illesztési felület, amelynek segítségével két különböző hardver- vagy szoftvereszköz közötti kommunikációt valósíthatunk meg. A csatolófelület feladata például az összekapcsoláshoz felhasznált jelrendszer értelmezése is. minden rétegA mai modern számítógép-hálózatok tervezését struktúrális módszerrel végzik, azaz a hálózat egyes részeit réteg-ekbe (layer) vagy más néven szint-ekbe (level) szervezik, amelyik mindegyike az előzőre épül. között tiszta legyen olyan értelemben, hogy az egyes rétegek egyértelműen definiált funkcióhalmazból álljanak. Ez egyszerűvé teszi az adott rétegA mai modern számítógép-hálózatok tervezését struktúrális módszerrel végzik, azaz a hálózat egyes részeit réteg-ekbe (layer) vagy más néven szint-ekbe (level) szervezik, amelyik mindegyike az előzőre épül. különböző megoldásainak a cseréjét, hiszen a megoldások az előbbiek alapján ugyanazt a szolgáltatást nyújtják a felettük levő rétegnek, segítve a nyílt rendszerek kialakítását.
A rétegek és protokollok halmazát nevezzük hálózati architektúrá-nak.Az architektúra kialakításakor az egyes rétegeket a következő elvek alapján kell megtervezni:
- minden rétegnek rendelkeznie kell a kapcsolat felépítését illetve annak lebontását biztosító eljárással,
- döntést kell hozni az adatátvitelKét vagy több eszköz közötti adatcsere. Az eszközök lehetnek számítógépek, perifériák, programok stb. Az adatátvitel fő jellemzője az adatátviteli sebesség, amely nagy mértékben függ az eszközök közötti kapcsolat, összeköttetés módjától, minőségétől. szabályairól: az átvitel egyirányú (szimplexIlyen átvitel esetén a csatornán áramló információ csak egy irányú lehet, mindig van adó és van vevő a rendszerben, ezek szerepet nem cserélnek. Ilyen kommunikáció a szokásos rádió vagy TV adás (nem tudunk visszabeszélni...). Az átvitel egyirányú.), váltakozóan két irányú (fél duplexAz ilyen átvitel esetén a csatornán az információáramlás már kétirányú, felváltva történik, úgy hogy egyszerre mindig csak az egyik irány foglalja a csatornát. Ilyen átvitel valósul meg nagyon sok rádiós kapcsolatban (pl. CB rádió). Váltakozóan két irányú = fél duplex.) vagy egyszerre két irányú (duplex) legyen.
- SzimplexIlyen átvitel esetén a csatornán áramló információ csak egy irányú lehet, mindig van adó és van vevő a rendszerben, ezek szerepet nem cserélnek. Ilyen kommunikáció a szokásos rádió vagy TV adás (nem tudunk visszabeszélni...). Az átvitel egyirányú. átvitel esetén a csatornán áramló információInformációnak nevezünk mindent, amit a rendelkezésünkre álló adatokból nyerünk. Az információ olyan tény, amelynek megismerésekor olyan tudásra teszünk szert, ami addig nem volt a birtokunkban. Az információ legkisebb egysége a bit. A számítástechnikában a programok is 1 bites információkból épülnek fel. csak egy irányú lehet, mindig van adó és van vevő a rendszerben, ezek szerepet nem cserélnek. Ilyen kommunikáció a szokásos rádió- vagy TV adás (nem tudunk visszabeszélni…)
- Fél duplexAz ilyen átvitel esetén a csatornán az információáramlás már kétirányú, felváltva történik, úgy hogy egyszerre mindig csak az egyik irány foglalja a csatornát. Ilyen átvitel valósul meg nagyon sok rádiós kapcsolatban (pl. CB rádió). Váltakozóan két irányú = fél duplex.<duplex átvitelAz átvitel egyszerre két irányú (duplex) . Ilyen átvitel esetén egyidejű két irányban történő átvitel valósul meg, hasonlóan az emberi beszélgetéshez, és technikai példaként a telefont említhetjük meg. esetén a csatornán az információáramlás már kétirányú, felváltva történik, úgy hogy egyszerre mindig csak az egyik irány foglalja a csatornát. Ilyen átvitel valósul meg nagyon sok rádiós kapcsolatban (pl. CB rádió)
- Duplex átvitelAz átvitel egyszerre két irányú (duplex) . Ilyen átvitel esetén egyidejű két irányban történő átvitel valósul meg, hasonlóan az emberi beszélgetéshez, és technikai példaként a telefont említhetjük meg. esetén egyidejű, két irányban történő átvitel valósul meg, hasonlóan az emberi beszélgetéshez, és technikai példaként a telefont említhetjük meg.
Megjegyzés: egyes terminológiák esetén szokásos a fentiekre a szimplex-duplex-full duplex elnevezéseket használni, amiAlternate Mark Inversion: - váltakozó 1 invertálás. A módszer nagyon hasonló az RZ módszerhez, de nullára szimmetrikus tápfeszültséget használ, így az egyenfeszültségű összetevője nulla. Minden 1-es-hez rendelt polaritás az előző 1-eshez rendelt ellentettje, a nulla szint jelöli a 0-át. Természetesen hosszú 0-s sorozatok esetén a szinkronizáció itt is problémás, de a bitbeszúrási módszer itt is használható. elég zavaró az ugyanazon duplex szó eltérő értelmezése miatt.
- milyen legyen a rendszerben a hibavédelem, hibajelzés,
- hogyan oldható meg a gyors adók-lassú vevők együttműködése (ez a folyamatvezérlés = flow control),
- ha bizonyos okok miatt az üzenetek hossza korlátozott, és ezért a küldés előtt szét kell darabolni azokat, felmerül a kérdés, hogy hogyan biztosítható a helyes összerakásuk,
- az előbbi esetben biztosított-e az üzenetek sorrendjének a helyessége,
- nagyon sokszor ugyanazon a fizikai csatornán több párbeszéd zajlik (ez jobb vonalkihasználást eredményez); hogyan kell ezt összekeveredés-mentesen megoldani,
- ha a cél és a forrás között több útvonal lehetséges, fontos a valamilyen szempontból optimális útvonal kiválasztása.
Ilyen és ehhez hasonló kérdésekre kell választ adni a tervezés során, és talán kezd világossá válni hogy ezekre a kérdésekre nincs együttesen optimális válasz, amiAlternate Mark Inversion: - váltakozó 1 invertálás. A módszer nagyon hasonló az RZ módszerhez, de nullára szimmetrikus tápfeszültséget használ, így az egyenfeszültségű összetevője nulla. Minden 1-es-hez rendelt polaritás az előző 1-eshez rendelt ellentettje, a nulla szint jelöli a 0-át. Természetesen hosszú 0-s sorozatok esetén a szinkronizáció itt is problémás, de a bitbeszúrási módszer itt is használható. a későbbiekben leírt megoldások sokszínűségét igazolja.